Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Possibilities of the description of stress-strain curves for computational simulations
Košťál, Josef ; Halabuk, Dávid (oponent) ; Šebek, František (vedoucí práce)
This bachelor’s thesis investigated the identification of material’s flow curve using experimental data from standard tensile test output, and the possibilities of fitting a non-linear relationship through this identified curve. The theoretical background of differences between engineering and true stress and strain was presented, as well as the tensile test basis and its output. An analytical correction method (Mirone-La Rosa) for flow curve’s trend estimation, using the tensile test as an input, was described and used. Elasto-plastic piece-wise linear material models were listed and additionally four non-linear relationships were chosen and investigated – Hollomon, Ludwik, Swift and Voce. Then, the finite element method was used for flow curve identification of experimentally tested 18CrNiMo7-6 steel, with a standard tensile test output needed for flow curve calibration. Flow curve was calibrated with iterative process on the basis of comparison of reaction forces from simulation and experiment. Furthermore, the user interface was created, and the best fit out of four chosen non-linear relationships was found.
Possibilities of the description of stress-strain curves for computational simulations
Košťál, Josef ; Halabuk, Dávid (oponent) ; Šebek, František (vedoucí práce)
This bachelor’s thesis investigated the identification of material’s flow curve using experimental data from standard tensile test output, and the possibilities of fitting a non-linear relationship through this identified curve. The theoretical background of differences between engineering and true stress and strain was presented, as well as the tensile test basis and its output. An analytical correction method (Mirone-La Rosa) for flow curve’s trend estimation, using the tensile test as an input, was described and used. Elasto-plastic piece-wise linear material models were listed and additionally four non-linear relationships were chosen and investigated – Hollomon, Ludwik, Swift and Voce. Then, the finite element method was used for flow curve identification of experimentally tested 18CrNiMo7-6 steel, with a standard tensile test output needed for flow curve calibration. Flow curve was calibrated with iterative process on the basis of comparison of reaction forces from simulation and experiment. Furthermore, the user interface was created, and the best fit out of four chosen non-linear relationships was found.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.